Gemcitabine, irinotecan and celecoxib in patients with biliary cancer

James F. Watkins^b, Matthew S. Mayo^a, Holly J. Smith^{a,c} and Stephen K. Williamson^b

The incidence of hepatobiliary cancers is increasing and no standard therapy currently exists. Gemcitabine is an active drug in this disease. Previous studies suggest that the combination of gemcitabine and irinotecan is active with reasonable toxicity profiles in pancreatic and hepatobiliary cancers. COX-2 induction and overexpression have been documented in biliary dysplasia and biliary malignancies. We report on a case series of the efficacy and toxicity of gemcitabine plus irinotecan plus celecoxib in patients with advanced biliary cancer. The treatment consisted of gemcitabine 1000 mg/m² given intravenously on days 1 and 8, irinotecan 100 mg/m² given intravenously on days 1 and 8, and celecoxib 400 mg orally twice daily every 21 days. Six patients were enrolled, one was ineligible, therefore data were examined on the five remaining patients. One patient had a complete response, one had a partial response, two had stable disease, and one received one cycle of treatment and decided on surgery hence could not be assessed. The treatment was well tolerated with one grade 4 adverse event of thrombocytopenia. In conclusion, the combination of gemcitabine, irinotecan, and celecoxib appears to be well tolerated with some activity against biliary cancer. Further studies using this combination are warranted. *Anti-Cancer Drugs* 20:294–300 © 2009 Wolters Kluwer Health | Lippincott Williams & Wilkins.

Anti-Cancer Drugs 2009, 20:294-300

Keywords: biliary cancer, celecoxib, cholangiocarcinoma, cyclooxygenase, gallbladder cancer, hepatobiliary cancer, metastatic, unresectable

^aDepartment of Biostatistics, Center for Biostatistics and Advanced Informatics, ^bDivision of Hematology/Oncology, University of Kansas Medical Center and ^cUniversity of Kansas Cancer Center, Kansas, USA

Correspondence to Dr Stephen K. Williamson, MD, Division Director, Division of Hematology/Oncology, 2330 Shawnee Mission Parkway, Suite 210, Westwood, Kansas 66205, USA

Tel: +1 913 588 6029; fax: +1 913 588 4085; e-mail: swilliam@kumc.edu

Received 29 September 2008 Revised form accepted 2 January 2009

Introduction

The incidence of biliary cancers is increasing and 5-year survival of all biliary cancers is less than 5% with median survival of less than 1 year [1]. In 2008, it is estimated that there will be approximately 9500 new cases of gallbladder and other extrahepatic bile duct cancers and approximately 19 160 intrahepatic bile duct and liver cancers diagnosed in the United States [2]. More than 90% of patients die of their disease, accounting for approximately 2% of American cancer deaths. Long-term survival is highly dependent on the effectiveness of surgical therapy. Surgical resection offers the only hope of cure [3]. For patients with unresectable or metastatic disease, there is no hope for long-term control of disease with death occurring within 6 months to a year from diagnosis [3-5]. Combinations of various chemotherapeutic agents have been tested with no one regimen providing any clear evidence of significant response or benefit. To date, there is no accepted standard regimen for treatment of these diseases [6-9]. Recent reports in phase I and II trials suggest a greater response rate for combinations of 5-fluorouracil (5-FU) or capecitabine and a platinum or gemcitabine combination with reported response rates of 20–40% [10–13]. Phase III trials have not been conducted to better study any combination of these agents. There is no accepted standard therapy for these diseases, therefore combinations of active drugs should be investigated.

0959-4973 © 2009 Wolters Kluwer Health | Lippincott Williams & Wilkins

On the basis of preclinical data suggesting a dosedependent synergy between gemcitabine and irinotecan a phase I trial combining gemcitabine and irinotecan has been carried out [14-16]. The sequence of administration of gemcitabine followed by irinotecan, was empirical. No preclinical data were available to suggest sequencerelated differences in toxicity or efficacy. The maximum tolerated dose of irinotecan given intravenously (i.v.) over 90 min on days 1 and 8 every 3 weeks preceded by gemcitabine 1000 mg/m² given i.v. on days 1 and 8, was 100 mg/m²/dose. Dose-limiting toxicity includes diarrhea at an irinotecan dose of 115 mg/m². The recommended phase II doses for this combination are gemcitabine 1000 mg/m² and irinotecan 100 mg/m² given on days 1 and 8 and repeated every 3 weeks as the starting dose. Escalation of irinotecan to 115 mg/m² may be considered for subsequent cycles in patients with minimal or no toxicity during the first cycle. This phase I experience included three patients with previously untreated advanced pancreatic cancer [15]. Two of the three patients achieved documented partial responses (PRs). The third patient has had a clinical benefit response and shrinkage of measurable tumor not meeting PR criteria.

Cyclooxygenases regulate prostaglandin formation and has been shown to be involved in tumor development in multiple malignancies [17–25]. There are three isoforms

DOI: 10.1097/CAD.0b013e3283287ca0

of cyclooxygenase: COX-1, COX-2, and COX-3 [26]. The inducible isoform of cyclooxygenase, COX-2, is involved in tumor development and progression. Several studies have shown COX-2 induction in malignant tissues, but not in surrounding normal tissues [17-20,26]. COX-1 is present in most cells, unlike COX-2 which is only found in normal liver, kidney, and pancreatic island tissue. COX-2 induction has been found in hepatobiliary cancers [27-34]. A recent study by Schmitz et al. [24] found that increased COX-2 expression was correlated with decreased apoptosis and increased tumor proliferation. Patients with strong COX-2 expression had significantly lower overall survival versus those with COX-2 negative expression (11.4 vs. 22.8 months). Santini et al. [31] found that COX-2 overexpression in surgically resected ampullary cancer tissue was associated with decreased overall survival. Legan et al. [19] evaluated gallbladder tissue and found that the COX-2 expression is lowest in normal tissue and highest in high-grade dysplasia. Patients with normal or low-grade gallbladder dysplasia did not accumulate p53, but patients with high-grade dysplasia and adenocarcinoma accumulated p53. COX-2 overexpression was found in tissue with p53 accumulation more often than in tissue without p53 accumulation (94.4 vs. 40%, P < 0.0001) [19]. COX-2 expression is important because it offers an alternate target using NSAIDs, such as COX-2 inhibitors. Celecoxib (400 mg twice daily) decreases polyp formation in patients with familial adenomatous polyposis [35,36]. In-vivo studies have shown that COX-2 selective inhibitors have antitumor activity with growth inhibition of Lewis lung tumors, HT-29 colon cancer, head and neck cancer, skin cancer, and bladder cancer [21-23,25]. Current data suggest that COX-2 activity is important for angiogenesis, tumor growth, and metastases.

A phase II trial using gemcitabine plus irinotecan plus celecoxib was initiated to assess the activity of this regimen in patients with biliary cancer by measuring response rate, time to progression, and overall survival.

Patients and methods

This is a single-center, nonrandomized, phase II study. The study was approved by the institution's review board and all patients signed informed consent.

Patient population

Patients with previously untreated, unresectable, recurrent or metastatic gall bladder, or bile duct carcinoma who met eligibility criteria were included for this study. Neoadjuvant chemotherapy and/or radiation therapy was allowed at the time of initial diagnosis with localized disease. Prior treatment with gemcitabine and/or irinotecan was not allowed. Prior thoraco-abdominal surgery was allowed if it was more than 3 weeks prior to registration and the patient recovered completely. Other inclusion criteria were Zubrod performance status 0-2, pretreatment labs as follows: granulocyte count > 1500/µl, platelet count $\geq 100\,000/\mu l$, serum creatinine $\leq 1.5 \times l$ the institutional upper limit of normal, bilirubin of $\leq 2 \times$ the institutional upper limit of normal, serum glutamic oxaloacetic transaminase less than $5 \times$ the institutional upper limit of normal.

Exclusion criteria were: active inflammatory bowel disease, significant bowel obstruction, chronic diarrhea, known brain metastases (no imaging required), unstable comorbid conditions, pregnant women, nursing women, patients of reproductive age unless they agreed to use effective contraceptives. There should have been no plan for concomitant radiation therapy, hormonal therapy, or other chemotherapy for their tumor.

Treatment plan and dose modification

Gemcitabine 1000 mg/m² i.v. over 30 min was given on days 1 and 8, every 21 days. Irinotecan 100 mg/m² i.v. over 90 min was given on days 1 and 8, every 21 days. Celecoxib 400 mg orally twice daily was given continuously during the study. Gemcitabine was given before irinotecan. Patients were continued on this regimen until disease progression, unacceptable toxicity, treatment delay greater than 2 weeks, or patient decision to withdraw from the study. The plan was to continue treatment for at least six cycles for patients achieving complete response (CR), PR, or stable disease (SD). Before treatment with gemcitabine and irinotecan the following premedications were given: dexamethasone 10 mg i.v. (antiemetic) and either ondansetron or granisetron or dolasetron. Lorazepam 1-2 mg i.v./orally was given if needed before irinotecan. No prophylactic anticholinergic medications were given. Loperamide 4 mg every 4h was used as needed for treatment-related diarrhea. Granulocyte macrophage-colony stimulating factor (sargramostim) was not allowed. Prophylactic use of granulocyte-colony stimulating factor was not recommended, but was allowed for patients experiencing severe neutropenic complications and used as per accepted guidelines.

Dosage modifications

If there were multiple drug toxicities, the toxicity requiring the greatest dose reduction was used. Dose modifications

Table 1 Dose modification steps

		Do	se	
Drug	Starting	Level-1	Level-2	Level-3
Irinotecan (mg/m²)	100	75	50	Remove from trial
Gemcitabine (mg/m²)	1000	750	500	Remove from trial
Celcoxib (mg, b.i.d.) ^a	400	200	100	Remove from trial

b.i.d., twice daily.

^alf baseline liver function was abnormal, the starting dose was reduced to 50%.

for gemcitabine and irinotecan were used for abnormal liver function tests. Once a dose modification was made, there was no escalation of dose later. Recommended dose modification is listed in Table 1.

Day 1 dose modifications

These modifications were based on the worst toxicity experienced during the prior cycle, the same dose was given on day 8 unless criteria in the next paragraph prompted further dose reduction. Gemcitabine and irinotecan were dose reduced one level for febrile neutropenia, sepsis, thrombocytopenia requiring transfusion, grade 4 stomatitis/esophageal/dvsphagia, or for other grade 3 or greater nonhematologic toxicities not listed in this paragraph. Gemcitabine was dose reduced one level for grade 2 or greater stomatitis/esophageal/dysphagia and for grade 3 or greater edema. Irinotecan was dose reduced one level for grade 3 or greater diarrhea and grade 2 pulmonary toxicity. Gemcitabine and irinotecan were discontinued for grade 3 or greater pulmonary toxicity. Gemcitabine was discontinued for grade 4 skin toxicity and grade 2 or greater pulmonary toxicity.

Day 8 dose modifications

These modifications were based on the worst toxicity during the current cycle on day 8. For gemcitabine and irinotecan, a one level dose reduction was performed for absolute neutrophil count 1000-1499 or platelet count of 75 000-99 000. Gemcitabine and irinotecan were not given on day 8 for absolute neutrophil count less than 1000, platelet count less than 75 000, febrile neutropenia, sepsis, thrombocytopenia requiring transfusion, or other nonhematologic toxicity grade 2 or greater. Gemcitabine and irinotecan were discontinued for grade 3 or higher pulmonary toxicity. Gemcitabine was dose reduced one level for grade 3 or greater skin toxicity. Gemcitabine was not given for grade 2 or greater stomatitis or esphogeal/ dysphagia, or grade 3 or greater edema. Irinotecan was dose reduced one level for grade 2 diarrhea and was not given for grade 3 or greater diarrhea.

Celecoxib dose reductions

Celecoxib doses were reduced one level for platelet count of 50 000-99 000, grade 2 bilirubin/aspartate aminotransferase (AST)/alanine aminotransferase (ALT), or for grade 1 renal toxicity. Celecoxib doses were reduced two levels if both bilirubin and AST or ALT were grade 2. Celecoxib was held for platelet count less than 50 000,

thrombocytopenia requiring transfusion, grade 2 or greater gastrointestinal ulceration, grade 3 or higher diarrhea, grade 3 or greater stomatitis/esophageal/dysphagia, grade 3 or greater bilirubin, AST/ALT, grade 2 or greater renal toxicity, or for other grade 3 or greater nonhematologic toxicity. In the event of any cerebrovascular or cardiovascular event, celecoxib was discontinued.

Before each cycle, the following were required: granulocyte count greater than 1500/mm³, platelet count greater than 100 000/mm³, and any treatment-related diarrhea had to be fully controlled. Any toxicity had to be less or equal to grade 1 before proceeding with additional treatment. Treatment evaluation was made weekly. If treatment was withheld for more than 2 weeks, the patient was excluded from the study.

Response and toxicity assessment

Response was assessed using the Response Evaluation Criteria in Solid Tumors [37]. To achieve CR or PR, patients had to maintain CR or PR at two different assessments that were at least 4 weeks apart. Disease progression was considered to be any progression within 12 weeks of study registration. Toxicity of adverse events and laboratory abnormalities were assessed and graded according to the National Cancer Institute-Common Toxicity Criteria 2.0.

Statistical analysis

The study was designed to evaluate the response rate, duration of survival, duration of response, and overall survival. The primary end point was response rate. The secondary end points were time to progression, overall survival, and toxicity. Patient baseline characteristics were tabulated using descriptive statistics. However, given the limited enrollment, we can only descriptively summarize the results of this study. Baseline characteristics for each individual patient are given in Table 2 and include age at enrollment, sex, race, ethnicity, disease status at enrollment, histology, and performance status. Treatment outcome summary for each patient is given in Table 3 and include number of cycles completed, best response, time to progression, survival time, and reason taken off treatment. Time to progression was measured from the date of study registration to the day of disease progression or death because of any cause. Time to death was measured from the date of study registration to the date of death because of any cause. Table 4 summarized the

Table 2 Baseline characteristics

Age (years)	Sex	Race	Ethnicity	Current disease	Histology	Performance status
65	Male	Caucasian	Non-Hispanic	Metastatic (liver)	Adenocarcinoma	0
64	Male	Caucasian	Non-Hispanic	Regional (bile duct involving pancreas)	Adenocarcinoma	1
68	Female	Asian	Non-Hispanic	Metastatic (liver)	Adenocarcinoma	1
56	Female	Caucasian	Non-Hispanic	Metastatic (liver)	Adenocarcinoma	1
59	Female	Caucasian	Non-Hispanic	Regional (gall bladder), metastatic (liver)	Adenocarcinoma	1

Table 3 Treatment and outcome summary

Patient	Number of cycles completed	Best response	Time to progression (months) ^a	Survival time (months)	Reason taken off treatment
1	4	CR	10.4	21.9	Patient's request
2	7	SD	27.3	27.3	Unacceptable toxicity
4	6	SD	9.8	12.3	Unacceptable toxicity
5	1	Unable to assess	12.5	17.0	Patient's request – had one cycle of treatment then went for surgical resection
6	8	PR	6.4	6.4	>2-week delay beyond planned treatment

CR, complete response; PR, partial response; SD, stable disease.

Table 4 Toxicities experienced by each patient according to maximum grade

	Maximum grade (number of patients)				
Type of toxicity	1	2	3	4	
Lymphatics		1			
Neurology		1			
Pain	2	2			
Dermatology	3	1	1		
Platelets	2	1		1	
ANC/AGC		1	1		
Metabolic/laboratory			1		
Genitourinary/renal			1		
Cardiovascular			2		
Infection/febrile neutropenia			1		
Hepatic			1		
Gastrointestinal	2	2	1		
Hemoglobin	1	1	1		
Pulmonary		3			
Allergy/immunology	1				
Constitutional symptoms	1	2	1		

AGC, absolute granulocyte count; ANC, absolute neutrophil count.

maximum grade of adverse events for each patient based upon type of adverse event.

Results

Patient characteristics

The trial was started from 23 September 2003 to 27 August 2006 and was ended because of poor accrual. Our center enrolled 16 patients with cholangiocarcinoma and six patients with gallbladder carcinoma in that time period, but only six patients were potentially eligible for the trial. Patients with this disease frequently have liver function abnormalities that are too severe to be safely treated. One patient was not eligible as there was no pathologically confirmed diagnosis and the bilirubin was outside of the specified range. Five patients were eligible and evaluable for response. Patients ranged in age from 56 to 68 years, all had adenocarcinoma, and they all had a performance status of 0 or 1. Table 2 summarizes characteristics of the five patients. No statistical analysis was performed for the baseline characteristics, because of the small number of patients in this trial.

Response and survival

Patients completed between one and eight cycles of treatment. Best response to treatment was assessed for the four patients who completed more than one cycle of chemotherapy. One patient had a CR, one had a PR, and two patients had SD lasting 27 and 10 months, respectively. Chemotherapy was discontinued in two of the five patients who received six and seven cycles of treatment secondary to unacceptable cumulative toxicity. Time to progression and overall survival are summarized in Table 3.

Safety

One patient had a grade 4 thrombocytopenia. There were no other grade four toxicities (Table 4). Two of the five patients died because of disease progression, not because of toxicity while on the study protocol.

Discussion

The current treatment of unresectable or metastatic cholangiocarcinoma can include a combination of chemotherapy with radiation, chemotherapy using a 5-FU-based regimen or gemcitabine, (NCCN Practice Guidelines in Oncology v.2.2008), or palliative care only. It is important that we continue to explore new treatment options and combinations through the utilization of clinical trials.

We had poor accrual to the trial, therefore we are unable to draw conclusions with definite treatment implications. The results of these five patients show that the combination of gemcitabine, irinotecan, and celecoxib is tolerated with manageable toxicity. The results suggest some unknown degree of activity with two patients achieving objective responses and other two with prolonged SD. However, the precise figure cannot be determined. These data are no more reliable than that obtained from case reports, but do suggest some degree of activity. Our experience shows the difficulty in enrolling this group of patients into clinical trials, as only six of 22 patients enrolled to our institution were eligible for this trial. The primary reason for ineligibility was poor liver function, usually because of the patient's tumor or the underlying liver disease that predisposed the patient to this malignancy.

The treatment of advanced and metastatic biliary carcinoma is not well defined. The most commonly used regimens had been 5-FU based or combinations with response rates ranging from 0 to 15% and median survival of 2–12 months [6–9,38,39]. More recently, gemcitabine and gemcitabine-based regimens have shown response rates between 20 and 30% with median survival times between 5 and 12 months [11-13,40-42]. Four recent phase II trials of capecitabine and gemcitabine in patients with hepatobiliary tumors have shown response rates in

^aTime to progression is equal to survival time if patient had not had documented progressive disease before death.

the range of 20-50% and median survival times of 12-14 months [1,43–45], suggesting that this combination may be more effective than older 5-FU-based regimens, however, no phase III trials are likely to be completed to answer this question. Serrano and Gerson [46] recently reported on an overall review of published trials of gemcitabine, alone or in combination, as a treatment for advanced biliary tract carcinoma. Gemcitabine monotherapy has been reported in 310 patients and gemcitabine-based combination therapy has been reported in 635 patients. Monotherapy with gemcitabine has response rates of 0-36% and overall survival of 4-14 months. Combination therapy with gemcitabine has response rates of 9.3–64% and overall survival of 4.7-18 months. The authors feel that treatment for biliary cancer should be a gemcitabine-based combination with a platinum or capecitabine or gemcitabine monotherapy. They concluded that gemcitabine monotherapy or gemacitabine-based combination therapy should be the standard of care for patients with advanced biliary tract cancer.

Others have evaluated regimens similar to ours, but to date, no definitive trials have been reported. Sun et al. [47], performed a phase I trial of fixed dose rate gemcitabine plus irinotecan in 32 patients with metastatic pancreatic or unresectable or metastatic biliary cancer. Two patients developed deep venous thrombosis. Dose-limiting toxicities included dehydration, diarrhea, fatigue, neutropenia, and neutropenic fever. There were two PRs observed in the nine patients with biliary cancer. Median overall survival was 7.0 months. Gemcitabine plus irinotecan was evaluated in 16 patients with locally advanced or metastatic biliary cancers by Bhargava et al. [48]. Two patients had a PR and six patients had SD for periods ranging from 4 to 11.5 months. Toxicity consisted of grade 3/4 neutropenia in seven patients with no episodes of febrile neutropenia, grade 3/4 thrombocytopenia in four patients, grade 3 diarrhea in two patients, and grade 3 nausea in one patient. Two patients died, one from disease progression and one from pneumonia. The authors concluded that the combination of gemcitabine plus irinotecan appears to possess modest clinical activity, and it is well tolerated in patients with advanced biliary cancer, however, patient accrual was continuing [48]. We have not found an updated report or published manuscript of the completed trial.

A preliminary report of the combination of gemcitabine, irinotecan, and celecoxib has been reported in 11 patients with unresectable pancreatic cancer. The combination was noted to improve performance status, provide pain relief, and decrease levels of CEA and CA 19-9. Of the 11 patients, one had a partial response lasting 10 months, five had stable disease with duration ranging from 4 to 9 months, three were too early in treatment at the time of the report to assess response. An elderly woman who developed neutropenia, diarrhea, and sepsis died. One

patient developed grade 3 neutropenia and another patient developed grade 4 neutropenia. One patient developed grade 3 anemia [49]. We were unable to find any updated reports on this trial.

A trial in non-small-cell lung cancer failed to show a benefit for the addition of celecoxib to chemotherapy. A randomized phase II trial in second-line therapy of non-small-cell lung cancer evaluated the combinations of irinotecan plus docetaxel versus gemcitabine plus irinotecan and either arm with or without celecoxib. They did not find any improvement in median or 1-year survival rates with the addition of celecoxib to either regimen and noted that patients had similar lung cancer symptom scales and toxicity profiles regardless of whether or not they received celecoxib [50].

There is a significant amount of data suggesting that the COX-2 pathway plays a significant role in the pathogenesis of cholangiocarcinoma [27,33,34,51-54]. Whether or not COX-2 inhibitors will be more beneficial as preventive agents or can actually be used for treatment of known cancers remains to be determined. Unfortunately, there have been significant negative reports regarding COX-2 inhibitors in terms of their association with increased risks of myocardial infarction in patients using them [35,55–58]. This negative interaction will make it difficult to pursue prevention trials with these agents. However, in the treatment of incurable cancers, if significant antitumor activity can be shown, the cardiovascular risks may be outweighed by the benefits as has been shown with the use of vascular endothelial growth factor inhibitors. Despite the likely difficulty enrolling patients in COX-2 inhibitor trials, it is important to design further studies to evaluate the role of COX-2 inhibition and treatment outcome. Our case series provides evidence that celecoxib can be safely combined with chemotherapy and that further studies of celecoxib in biliary protocols should be considered.

References

- Riechelmann RP. Townslev CA. Chin SN. Pond GR. Knox JJ. Expanded phase II trial of gemcitabine and capecitabine for advanced biliary cancer. Cancer 2007; 110:1307-1312.
- Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. CA Cancer J Clin 2008; 58:71-96.
- Burke EC, Jarnagin WR, Hochwald SN, Pisters PW, Fong Y, Blumgart LH. Hilar cholangiocarcinoma: patterns of spread, the importance of hepatic resection for curative operation, and a presurgical clinical staging system. Ann Surg 1998; 228:385-394.
- Carriaga MT, Henson DE. Liver, gallbladder, extrahepatic bile ducts, and pancreas. Cancer 1995; 75 (1 Suppl):171-190.
- Nagorney DM, Donohue JH, Farnell MB, Schleck CD, Ilstrup DM. Outcomes after curative resections of cholangiocarcinoma. Arch Surg 1993; 128: 871-877; discussion 7-9.
- 6 Falkson G, MacIntyre JM, Moertel CG. Eastern Cooperative Oncology Group experience with chemotherapy for inoperable gallbladder and bile duct cancer. Cancer 1984; 54:965-969.
- Gebbia V, Majello E, Testa A, Pezzella G, Giuseppe S, Giotta F, et al. Treatment of advanced adenocarcinomas of the exocrine pancreas and the gallbladder with 5-fluorouracil, high dose levofolinic acid and oral

- hydroxyurea on a weekly schedule. Results of a multicenter study of the Southern Italy Oncology Group (G.O.I.M.). Cancer 1996; 78:1300-1307.
- Taal BG, Audisio RA, Bleiberg H, Blijham GH, Neijt JP, Veenhof CH, et al. Phase II trial of mitomycin C (MMC) in advanced gallbladder and biliary tree carcinoma. An EORTC Gastrointestinal Tract Cancer Cooperative Group Study. Ann Oncol 1993; 4:607-609.
- Takada T, Kato H, Matsushiro T, Nimura Y, Nagakawa T, Nakayama T. Comparison of 5-fluorouracil, doxorubicin and mitomycin C with 5-fluorouracil alone in the treatment of pancreatic-biliary carcinomas. Oncology 1994; 51:396-400.
- 10 De Gusmao CBRA, Murad AM, Scalabrini-Neto AO, Phase II trial of the use of gemcitabine (G) and 5-fluorouracil (5-FU) in the treatment of advanced pancreatic (APC) and biliary tract (ABTC) adenocarcinoma [abstract # 1116]. Proc Am Soc Clin Oncol 1998; 16 (Suppl):290a.
- Gebbia V, Giuliani F, Maiello E, Colucci G, Verderame F, Borsellino N, et al. Treatment of inoperable and/or metastatic biliary tree carcinomas with single-agent gemcitabine or in combination with levofolinic acid and infusional fluorouracil: results of a multicenter phase II study. J Clin Oncol 2001: 19:4089-4091.
- Mezger J, Sauerbruch T, Ko Y, Wolter H, Funk C. Phase II trial of gemcitabine in biliary tract cancers. Proc Am Soc Clin Oncol 1997; 6:297a.
- 13 Poplin E, Roberts J, Tombs M, Grant S, Rubin E. Leucovorin, 5-fluorouracil, and gemcitabine: a phase I study. Invest New Drugs 1999; 17:57-62.
- Bahadori HR, Rocha Lima CM, Green MR, Safa AR. Synergistic effect of gemcitabine and irinotecan (CPT-11) on breast and small cell lung cancer cell lines. Anticancer Res 1999: 19:5423-5428.
- Rocha Lima CM, Leong SS, Sherman CA, Perkel JA, Putman T, Safa AR, et al. Irinotecan and gemcitabine in patients with solid tumors; phase I trial. Oncology (Huntingt) 2002; 16 (Suppl 5):19-24.
- Rocha Lima CM, Sherman CA, Brescia FJ, Brunson CY, Green MR. Irinotecan/gemcitabine combination chemotherapy in pancreatic cancer. Oncology (Huntingt) 2001; 15 (Suppl 5):46-51.
- Cheng T, Cao W, Wen R, Steinberg RH, LaVail MM. Prostaglandin E2 induces vascular endothelial growth factor and basic fibroblast growth factor mRNA expression in cultured rat Muller cells. Invest Ophthalmol Vis Sci 1998: 39:581-591.
- 18 Hoper MM, Voelkel NF, Bates TO, Allard JD, Horan M, Shepherd D, et al. Prostaglandins induce vascular endothelial growth factor in a human monocytic cell line and rat lungs via cAMP. Am J Respir Cell Mol Biol 1997; 17:748-756
- 19 Legan M, Luzar B, Marolt VF, Cor A. Expression of cyclooxygenase-2 is associated with p53 accumulation in premalignant and malignant gallbladder lesions. World J Gastroenterol 2006: 12:3425-3429.
- 20 Masferrer JL, Koki A, Seibert K. COX-2 inhibitors. A new class of antiangiogenic agents. Ann N Y Acad Sci 1999; 889:84-86.
- 21 Nishimura G, Yanoma S, Mizuno H, Kawakami K, Tsukuda M. A selective cyclooxygenase-2 inhibitor suppresses tumor growth in nude mouse xenografted with human head and neck squamous carcinoma cells. Jpn J Cancer Res 1999; 90:1152-1162.
- 22 Okajima E, Denda A, Ozono S, Takahama M, Akai H, Sasaki Y, et al. Chemopreventive effects of nimesulide, a selective cyclooxygenase-2 inhibitor, on the development of rat urinary bladder carcinomas initiated by N-butyl-N-(4-hydroxybutyl)nitrosamine. Cancer Res 1998; 58:3028-3031.
- Pentland AP, Schoggins JW, Scott GA, Khan KN, Han R. Reduction of UV-induced skin tumors in hairless mice by selective COX-2 inhibition. Carcinogenesis 1999; 20:1939-1944.
- Schmitz KJ, Lang H, Wohlschlaeger J, Reis H, Sotiropoulos GC, Schmid KW, et al. Elevated expression of cyclooxygenase-2 is a negative prognostic factor for overall survival in intrahepatic cholangiocarcinoma. Virchows Arch 2007; **450**:135-141.
- Williams CS, Tsujii M, Reese J, Dey SK, DuBois RN. Host cyclooxygenase-2 modulates carcinoma growth. J Clin Invest 2000; 105:1589-1594.
- Masferrer JL, Leahy KM, Koki AT, Zweifel BS, Settle SL, Woerner BM, et al. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res 2000; 60:1306-1311.
- Chariyalertsak S, Sirikulchayanonta V, Mayer D, Kopp-Schneider A, Furstenberger G, Marks F, et al. Aberrant cyclooxygenase isozyme expression in human intrahepatic cholangiocarcinoma. Gut 2001; 48:80-86.
- Cheifetz RE. Davis NL. Owen DA. An animal model of benign bile-duct stricture. sclerosing cholangitis and cholangiocarcinoma and the role of epidermal growth factor receptor in ductal proliferation. Can J Surg 1996; 39:193-197.
- Longo WE, Panesar N, Mazuski JE, Kaminski D. Synthetic pathways of gallbladder mucosal prostanoids: the role of cyclooxygenase-1 and 2. Prostaglandins Leukot Essent Fatty Acids 1999; 60:77-85.
- Perrone G. Santini D. Verzi A. Vincenzi B. Borzomati D. Vecchio F. et al. COX-2 expression in ampullary carcinoma: correlation with angiogenesis process and clinicopathological variables. J Clin Pathol 2006; 59:492-496.

- 31 Santini D, Vincenzi B, Tonini G, Scarpa S, Vasaturo F, Malacrino C, et al. Cyclooxygenase-2 overexpression is associated with a poor outcome in resected ampullary cancer patients. Clin Cancer Res 2005; 11:3784-3789.
- Tucker ON, Dannenberg AJ, Yang EK, Zhang F, Teng L, Daly JM, et al. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res 1999; 59:987-990.
- Wu GS, Zou SQ, Liu ZR, Tang ZH, Wang JH. Celecoxib inhibits proliferation and induces apoptosis via prostaglandin E2 pathway in human cholangiocarcinoma cell lines. World J Gastroenterol 2003; 9:1302-1306.
- Wu T. Cyclooxygenase-2 and prostaglandin signaling in cholangiocarcinoma. Biochim Biophys Acta 2005; 1755:135-150.
- Bertagnolli MM, Eagle CJ, Zauber AG, Redston M, Solomon SD, Kim K, et al. Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med 2006; 355:873-884.
- 36 Hawk E, Viner JL. The adenoma prevention with celecoxib and prevention of colorectal sporadic adenomatous polyps trials: stepping stones to progress. Cancer Epidemiol Biomarkers Prev 2007; 16:185-187.
- Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000; 92:205-216.
- Choi CW, Choi IK, Seo JH, Kim BS, Kim JS, Kim CD, et al. Effects of 5-fluorouracil and leucovorin in the treatment of pancreatic-biliary tract adenocarcinomas. Am J Clin Oncol 2000; 23:425-428.
- Takada T, Nimura Y, Katoh H, Nagakawa T, Nakayama T, Matsushiro T, et al. Prospective randomized trial of 5-fluorouracil, doxorubicin, and mitomycin C for non-resectable pancreatic and biliary carcinoma: multicenter randomized trial. Hepatogastroenterology 1998; 45:2020-2026.
- Kubicka S. Rudolph KL, Tietze MK, Lorenz M, Manns M, Phase II study of systemic gemcitabine chemotherapy for advanced unresectable hepatobiliary carcinomas. Hepatogastroenterology 2001; 48:783-789.
- Palmeri S, Leonardi V, Gebbia V, De Bella MT, Ferrau F, Faillu G, et al. Gemcitabine plus vinorelbine in stage IIIB or IV non-small cell lung cancer (NSCLC): a multicentre phase II clinical trial. Lung Cancer 2001; 34:115-123.
- 42 Penz M, Kornek GV, Raderer M, Ulrich-Pur H, Fiebiger W, Lenauer A, et al. Phase II trial of two-weekly gemcitabine in patients with advanced biliary tract cancer. Ann Oncol 2001; 12:183-186.
- Cho JY, Paik YH, Chang YS, Lee SJ, Lee DK, Song SY, et al. Capecitabine combined with gemcitabine (CapGem) as first-line treatment in patients with advanced/metastatic biliary tract carcinoma. Cancer 2005; 104:2753-2758.
- Iyer RV, Gibbs J, Kuvshinoff B, Fakih M, Kepner J, Soehnlein N, et al. A phase Il study of gemcitabine and capecitabine in advanced cholangiocarcinoma and carcinoma of the gallbladder: a single-institution prospective study. Ann Surg Oncol 2007; 14:3202-3209.
- 45 Knox JJ, Hedley D, Oza A, Feld R, Siu LL, Chen E, et al. Combining gemcitabine and capecitabine in patients with advanced biliary cancer: a phase II trial. J Clin Oncol 2005; 23:2332-2338.
- Serrano A, Gerson R. Chemotherapy with gemcitabine in advanced biliary tract carcinoma. Rev Recent Clin Trials 2008; 3:70-78.
- Sun W, Hewitt MR, Theobald MR, Hershock D, Haller DG. A phase 1 study of fixed dose rate gemcitabine and irinotecan in patients with advanced pancreatic and biliary cancer. Cancer 2007; 110:2768-2774.
- Bhargava P, Jani CR, Savarese DM, O'Donnell JL, Stuart KE, Rocha Lima CM. Gemcitabine and irinotecan in locally advanced or metastatic biliary cancer: preliminary report. Oncology (Huntingt) 2003; 17 (Suppl 8):23-26.
- Lipton A, Harvey H, Witters L, Kerr S, Legore K, Campbell C. Gemcitabine/ irinotecan/celecoxib in pancreatic cancer. Oncology (Williston Park, NY) 2004; 18 (Suppl 14):43-45.
- Lilenbaum R, Socinski MA, Altorki NK, Hart LL, Keresztes RS, Hariharan S, et al. Randomized phase II trial of docetaxel/irinotecan and gemcitabine/ irinotecan with or without celecoxib in the second-line treatment of non-small-cell lung cancer. J Clin Oncol 2006; 24:4825-4832.
- Zhang Z, Lai GH, Sirica AE. Celecoxib-induced apoptosis in rat cholangiocarcinoma cells mediated by Akt inactivation and Bax translocation. Hepatology 2004; 39:1028-1037.
- 52 Wu T, Leng J, Han C, Demetris AJ. The cyclooxygenase-2 inhibitor celecoxib blocks phosphorylation of Akt and induces apoptosis in human cholangiocarcinoma cells. Mol Cancer Ther 2004; 3:299-307.
- Kishi K, Petersen S, Petersen C, Hunter N, Mason K, Masferrer JL, et al. Preferential enhancement of tumor radioresponse by a cyclooxygenase-2 inhibitor, Cancer Res 2000: 60:1326-1331.
- Han C, Leng J, Demetris AJ, Wu T. Cyclooxygenase-2 promotes human cholangiocarcinoma growth: evidence for cyclooxygenase-2-independent

- mechanism in celecoxib-mediated induction of p21waf1/cip1 and p27kip1 and cell cycle arrest. Cancer Res 2004; 64:1369-1376.
- 55 Mukherjee D, Nissen SE, Topol EJ. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA 2001; 286:954-959.
- 56 Bresalier RS, Sandler RS, Quan H, Bolognese JA, Oxenius B, Horgan K, et al. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med 2005; 352:1092-1102.
- 57 Nussmeier NA, Whelton AA, Brown MT, Langford RM, Hoeft A, Parlow JL, et al. Complications of the COX-2 inhibitors parecoxib and valdecoxib after cardiac surgery. N Engl J Med 2005; **352**:1081-1091.
- 58 Solomon SD, McMurray JJ, Pfeffer MA, Wittes J, Fowler R, Finn P, et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med 2005; 352:1071-1080.